research/uefa/cycle24/simulations/drawsimulation_october_gurobi_all.py
2024-01-31 15:37:32 +01:00

597 lines
23 KiB
Python
Executable File

# %%
PROJECT_PATH = '/home/md/Work/ligalytics/leagues_stable/'
import os, sys
sys.path.insert(0, PROJECT_PATH)
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "leagues.settings")
os.environ["DJANGO_ALLOW_ASYNC_UNSAFE"] = "true"
from leagues import settings
settings.DATABASES['default']['NAME'] = PROJECT_PATH+'/db.sqlite3'
# settings.DATABASES['default']['ENGINE'] = 'django.db.backends.postgresql_psycopg2'
# settings.DATABASES['default']['HOST'] = '0.0.0.0'
# settings.DATABASES['default']['PORT'] = '5432'
# settings.DATABASES['default']['USER'] = 'postgres'
# settings.DATABASES['default']['PASSWORD'] = 'secret123'
# settings.DATABASES['default']['NAME'] = 'mypgsqldb'
# settings.DATABASES['default']['ATOMIC_REQUESTS'] = False
# settings.DATABASES['default']['AUTOCOMMIT'] = True
# settings.DATABASES['default']['CONN_MAX_AGE'] = 0
# settings.DATABASES['default']['CONN_HEALTH_CHECKS'] = False
# settings.DATABASES['default']['OPTIONS'] = {}
os.environ["XPRESSDIR"] = "/opt/xpressmp_8.4"
os.environ["XPRESS"] = "/opt/xpressmp_8.4/bin"
os.environ["LD_LIBRARY_PATH"] = os.environ["XPRESSDIR"] + "/lib"
os.environ["DYLD_LIBRARY_PATH"] = os.environ["XPRESSDIR"] + "/lib"
os.environ["SHLIB_PATH"] = os.environ["XPRESSDIR"] + "/lib"
os.environ["LIBPATH"] = os.environ["XPRESSDIR"] + "/lib"
os.environ["PYTHONPATH"] = os.environ["XPRESSDIR"] + "/lib"
os.environ["CLASSPATH"] = os.environ["XPRESSDIR"] + "/lib/xprs.jar"
os.environ["CLASSPATH"] = os.environ["XPRESSDIR"] + "/lib/xprb.jar" + os.pathsep + os.environ["CLASSPATH"]
os.environ["CLASSPATH"] = os.environ["XPRESSDIR"] + "/lib/xprm.jar" + os.pathsep + os.environ["CLASSPATH"]
os.environ["PATH"] = os.environ["XPRESSDIR"] + "/bin" + os.pathsep + os.environ["PATH"]
import django
django.setup()
from scheduler.models import *
from draws.models import *
import csv
from multiprocessing import Pool, cpu_count
import random
import time
import pulp
from pulp import lpSum, value, XPRESS, GUROBI, PULP_CBC_CMD
import gurobipy as gp
from gurobipy import GRB
import xpress as xp
# xp.controls.outputlog = 0
scenario = Scenario.objects.get(id=4)
# %%
teamObjects = Team.objects.filter(season=scenario.season,active=True).order_by('pot')
teams = teamObjects.values('id','country','pot','name')
getTeamById = {}
for t in teamObjects:
getTeamById[t.id] = f"({t.pot}) {t.name}"
getCountryById = {}
for t in teamObjects:
getCountryById[t.id] = t.country
countries = list(set(teamObjects.values_list('country', flat=True)))
teams_from_country = {
c:[t for t in teams if t['country']==c] for c in countries
}
pot = {}
for i in teamObjects.values_list('pot',flat=True).distinct():
pot[i] = list(teams.filter(pot=i))
teams = list(teams)
# fixed_games = [(3940, 3894), (3933, 3940), (3940, 3937), (3765, 3940), (3940, 3895), (3700, 3940), (3940, 3696), (3925, 3940), (3702, 3935), (3894, 3702), (3702, 3926), (3937, 3702), (3702, 3700), (3758, 3702), (3702, 3699), (3757, 3702), (3932, 3762), (3732, 3932), (3932, 3938), (3761, 3932), (3932, 3730), (3701, 3932), (3932, 3870), (3853, 3932), (3764, 3933), (3935, 3764), (3764, 3936), (3898, 3764), (3764, 3756), (3928, 3764), (3764, 3925), (3904, 3764), (3762, 3732), (3762, 3761), (3930, 3762), (3762, 3701), (3760, 3762), (3762, 3697), (3698, 3762), (3732, 3765), (3926, 3732), (3732, 3928), (3730, 3732), (3732, 3698), (3870, 3732), (3894, 3930), (3938, 3894), (3894, 3758)]
def check_feasible_pulp(fixed_games):
model = pulp.LpProblem(f"Draws", pulp.LpMinimize)
x = {}
for t1 in teams:
for t2 in teams:
if t1['country'] != t2['country']:
x[t1['id'], t2['id']] = pulp.LpVariable('x_'+str(t1['id'])+'_'+str(t2['id']),lowBound=0, upBound=1, cat=pulp.LpInteger)
# REQUIREMENTS
for t in teams:
for r in range(1,5):
# model.addConstraint(xp.Sum(x[t['id'],t2['id']] for t2 in pot[r] if (t['id'],t2['id']) in x.keys()) == 1)
# model.addConstraint(xp.Sum(x[t2['id'],t['id']] for t2 in pot[r] if (t2['id'],t['id']) in x.keys()) == 1)
model += lpSum(x[t['id'],t2['id']] for t2 in pot[r] if (t['id'],t2['id']) in x.keys()) == 1
model += lpSum(x[t2['id'],t['id']] for t2 in pot[r] if (t2['id'],t['id']) in x.keys()) == 1
for c in countries:
if c != t['country']:
# model.addConstraint(xp.Sum(x[t['id'],t2['id']]+x[t2['id'],t['id']] for t2 in teams_from_country[c]) <= 3)
model += lpSum(x[t['id'],t2['id']] for t2 in teams_from_country[c]) <= 2
# FIXATIONS
for (t1,t2) in fixed_games:
# print("FIXING",t1,t2)
# model.addConstraint(x[t1,t2] == 1)
model += x[t1,t2] == 1
for (t1,t2) in x.keys():
model += x[t1,t2] + x[t2,t1] <= 1, f'directed_{t1}_{t2}'
# model.addConstraint(x[t1,t2] + x[t2,t1] <= 1)
model += lpSum(random.uniform(0,1)*x[key] for key in x.keys())
tt =time.time()
model.solve(XPRESS(msg=0,timeLimit=120,keepFiles=0))
comp_time = time.time()-tt
if model.status in [-1,-2]:
return False, comp_time
else:
return True, comp_time
model = gp.Model('Draws')
model.Params.OutputFlag = 0
x = {}
for t1 in teams:
for t2 in teams:
if t1['country'] != t2['country']:
# x[t1['id'], t2['id']] = xp.var(ub=1, vartype=xp.integer)
x[t1['id'], t2['id']] = model.addVar(vtype=GRB.BINARY)
# REQUIREMENTS
for t in teams:
for r in range(1,5):
model.addConstr(gp.quicksum(x[t['id'],t2['id']] for t2 in pot[r] if (t['id'],t2['id']) in x.keys()) == 1)
model.addConstr(gp.quicksum(x[t2['id'],t['id']] for t2 in pot[r] if (t2['id'],t['id']) in x.keys()) == 1)
for c in countries:
if c != t['country']:
model.addConstr(gp.quicksum(x[t['id'],t2['id']]+x[t2['id'],t['id']] for t2 in teams_from_country[c]) <= 2)
for clash in Clash.objects.filter(draw__season=scenario.season):
for c1 in clash.countries.all():
for c2 in clash.countries.all():
if c1 != c2 and teams_from_country.get(c1.shortname) and teams_from_country.get(c2.shortname):
model.addConstr(gp.quicksum(x[t['id'],t2['id']]+x[t2['id'],t['id']] for t in teams_from_country[c1.shortname] for t2 in teams_from_country[c2.shortname]) <= 0)
print("CLASH",c1,c2)
for (t1,t2) in x.keys():
model.addConstr(x[t1,t2] + x[t2,t1] <= 1)
def check_feasible_gurobi(fixed_games):
# FIXATIONS
for key in x.keys():
if key in fixed_games:
x[key].lb = 1
else:
x[key].lb = 0
model.update()
# tt =time.time()
# model.solve()
model.optimize()
# comp_time = time.time()-tt
if model.Status == GRB.OPTIMAL:
return True, 0
else:
# print("INFEASIBLE FOUND")
return False, 0
def check_feasible(fixed_games):
model = xp.problem(name='Draws', sense=xp.minimize)
model.setControl ('outputlog', 1)
x = {}
for t1 in teams:
for t2 in teams:
if t1['country'] != t2['country']:
x[t1['id'], t2['id']] = xp.var(ub=1, vartype=xp.integer)
model.addVariable(x)
# REQUIREMENTS
for t in teams:
for r in range(1,5):
model.addConstraint(xp.Sum(x[t['id'],t2['id']] for t2 in pot[r] if (t['id'],t2['id']) in x.keys()) == 1)
model.addConstraint(xp.Sum(x[t2['id'],t['id']] for t2 in pot[r] if (t2['id'],t['id']) in x.keys()) == 1)
for c in countries:
if c != t['country']:
model.addConstraint(xp.Sum(x[t['id'],t2['id']]+x[t2['id'],t['id']] for t2 in teams_from_country[c]) <= 2)
# FIXATIONS
for (t1,t2) in fixed_games:
# print("FIXING",t1,t2)
model.addConstraint(x[t1,t2] == 1)
for (t1,t2) in x.keys():
model.addConstraint(x[t1,t2] + x[t2,t1] <= 1)
tt =time.time()
model.solve()
comp_time = time.time()-tt
if model.getProbStatus() != 6:
# print("INFEASIBLE FOUND")
return False, comp_time
else:
return True, comp_time
# model = xp.problem(name='Draws', sense=xp.minimize)
# model.setControl ('outputlog', 0)
# x = {}
# for t1 in teams:
# for t2 in teams:
# if t1['country'] != t2['country']:
# x[t1['id'], t2['id']] = xp.var(ub=1, vartype=xp.integer)
# model.addVariable(x)
# # REQUIREMENTS
# for t in teams:
# for r in range(1,5):
# model.addConstraint(xp.Sum(x[t['id'],t2['id']] for t2 in pot[r] if (t['id'],t2['id']) in x.keys()) == 1)
# model.addConstraint(xp.Sum(x[t2['id'],t['id']] for t2 in pot[r] if (t2['id'],t['id']) in x.keys()) == 1)
# for c in countries:
# if c != t['country']:
# model.addConstraint(xp.Sum(x[t['id'],t2['id']]+x[t2['id'],t['id']] for t2 in teams_from_country[c]) <= 2)
# for (t1,t2) in x.keys():
# model.addConstraint(x[t1,t2] + x[t2,t1] <= 1)
def check_feasible_fix(fixed_games):
# FIXATIONS
# for key in x.keys():
# if key in fixed_games:
# # x[key].lb = 1
# model.chgbounds([x[key]],['L'],[1])
# else:
# # x[key].lb = 0
# model.chgbounds([x[key]],['L'],[0])
reset_bounds = [key for key in x.keys() if key not in fixed_games]
model.chgbounds([x[key] for key in fixed_games],['L' for _ in range(len(fixed_games))],[1 for _ in range(len(fixed_games))])
model.chgbounds([x[key] for key in reset_bounds],['L' for _ in range(len(reset_bounds))],[0 for _ in range(len(reset_bounds))])
tt =time.time()
model.solve()
comp_time = time.time()-tt
if model.getProbStatus() != 6:
# print("INFEASIBLE FOUND")
return False, comp_time
return False
else:
return True, comp_time
return True
import itertools
from itertools import permutations , product
def simulate_draws(filename,n):
print("RUNNING ASYNC",filename)
fixed_games=None
for i_sim in range(1, n):
if i_sim % 100 == 0:
print("RUNNING ASYNC",filename,i_sim)
# start_time = time.time()
# n_computations = 0
# check_time = 0
# total_comp_time = 0
possible_opps = {}
for pos in range(8):
p = pos//2+1
teams_from_pot = list(teamObjects.filter(pot=p).values('id','country'))
possible_opps[pos] = {
t['id']: [t2['id'] for t2 in teams_from_pot if t2['country'] != t['country']] for t in teams
}
sol_opps = {
(t['id'],p):None
for t in teams for p in range(8)
}
sol_countries = {
(t['id'],c):0
for t in teams for c in countries if c != t['country']
}
fixed_games = []
feasible = True
for p in range(1,2):
currentPot = list(teamObjects.filter(pot=p).values_list('id', flat=True))
while(feasible and currentPot):
new_team = currentPot.pop(random.randint(0,len(currentPot)-1))
for current_pos in range(0,8,2):
if sol_opps[new_team,current_pos] != None and sol_opps[new_team,current_pos+1] != None:
continue
possible_opps[current_pos][new_team] = [t for t in possible_opps[current_pos][new_team] if sol_countries[new_team,getCountryById[t]] < 2 and sol_countries[t,getCountryById[new_team]] < 2]
possible_opps[current_pos+1][new_team] = [t for t in possible_opps[current_pos+1][new_team] if sol_countries[new_team,getCountryById[t]] < 2 and sol_countries[t,getCountryById[new_team]] < 2]
list_1 = [None]
list_2 = [None]
if sol_opps[new_team,current_pos] == None:
list_1 = possible_opps[current_pos][new_team]
if sol_opps[new_team,current_pos+1] == None:
list_2 = possible_opps[current_pos+1][new_team]
# unique_combinations = []
# for i in range(len(list_1)):
# for j in range(len(list_2)):
# unique_combinations.append((list_1[i], list_2[j]))
unique_combinations = list(itertools.product(list_1, list_2))
random.shuffle(unique_combinations)
no_solution_found = True
while (no_solution_found):
new_games = []
# if sol_opps[new_team,current_pos] == None:
# new_opponent1 = random.choice(possible_opps[current_pos][new_team])
# new_games.append((new_team,new_opponent1))
# if sol_opps[new_team,current_pos+1] == None:
# new_opponent2 = random.choice(possible_opps[current_pos+1][new_team])
# new_games.append((new_opponent2,new_team))
new_opponent1,new_opponent2 = unique_combinations.pop()
if new_opponent1:
new_games.append((new_team,new_opponent1))
if new_opponent2:
new_games.append((new_opponent2,new_team))
# n_computations += 1
# tt = time.time()
check, comp_time = check_feasible_gurobi(fixed_games+new_games)
# check_time += time.time()-tt
# total_comp_time += comp_time
if check:
no_solution_found = False
if sol_opps[new_team,current_pos] == None:
sol_opps[new_team,current_pos] = new_opponent1
sol_countries[new_team,getCountryById[new_opponent1]] += 1
sol_opps[new_opponent1,(2*p-1)] = new_team
sol_countries[new_opponent1,getCountryById[new_team]] += 1
if new_team in possible_opps[(2*p-1)-1][new_opponent1]:
possible_opps[(2*p-1)-1][new_opponent1].remove(new_team)
if sol_opps[new_team,current_pos+1] == None:
sol_opps[new_team,current_pos+1] = new_opponent2
sol_countries[new_team,getCountryById[new_opponent2]] += 1
sol_opps[new_opponent2,(2*p-1)-(1)] = new_team
sol_countries[new_opponent2,getCountryById[new_team]] += 1
if new_team in possible_opps[(2*p-1)][new_opponent2]:
possible_opps[(2*p-1)][new_opponent2].remove(new_team)
fixed_games += new_games
for p in range(2,5):
currentPot = list(teamObjects.filter(pot=p).values_list('id', flat=True))
while(feasible and currentPot):
new_team = currentPot.pop(random.randint(0,len(currentPot)-1))
unique_combinations = {}
for current_pos in range(2*(p-1),8,2):
possible_opps[current_pos][new_team] = [t for t in possible_opps[current_pos][new_team] if sol_countries[new_team,getCountryById[t]] < 2 and
sol_countries[t,getCountryById[new_team]] < 2 and sol_opps[t,(2*p-1)] == None]
possible_opps[current_pos+1][new_team] = [t for t in possible_opps[current_pos+1][new_team] if sol_countries[new_team,getCountryById[t]] < 2 and
sol_countries[t,getCountryById[new_team]] < 2 and sol_opps[t,(2*p-1)-1] == None]
list_1 = [0]
list_2 = [0]
if sol_opps[new_team,current_pos] == None:
list_1 = possible_opps[current_pos][new_team]
if sol_opps[new_team,current_pos+1] == None:
list_2 = possible_opps[current_pos+1][new_team]
unique_combinations[current_pos] = []
for i in list_1:
for j in list_2:
if i != j or (i == 0 and j == 0):
unique_combinations[current_pos].append((i, j))
combi_list = list(itertools.product(*unique_combinations.values()))
random.shuffle(combi_list)
# print("STOP")
# for current_pos in range(2*(p-1),8,2):
# print(current_pos,possible_opps[current_pos][new_team])
# print(current_pos+1,possible_opps[current_pos+1][new_team])
# list_1 = [0]
# list_2 = [0]
# if sol_opps[new_team,current_pos] == None:
# list_1 = possible_opps[current_pos][new_team]
# if sol_opps[new_team,current_pos+1] == None:
# list_2 = possible_opps[current_pos+1][new_team]
# unique_combinations[current_pos] = []
# for i in list_1:
# for j in list_2:
# if i != j or (i == 0 and j == 0):
# unique_combinations[current_pos].append((i, j))
# print(unique_combinations)
# exit()
no_solution_found = True
while (no_solution_found):
# print("\tPOP",len(combi_list))
new_games = []
new_opponents = combi_list.pop()
for o1,o2 in new_opponents:
if o1:
new_games.append((new_team,o1))
if o2:
new_games.append((o2,new_team))
# n_computations += 1
# tt = time.time()
check, comp_time = check_feasible_gurobi(fixed_games+new_games)
# check_time += time.time()-tt
# total_comp_time += comp_time
if check:
no_solution_found = False
fixed_games += new_games
for i,(new_opponent1,new_opponent2) in enumerate(new_opponents):
current_pos = 2*(p-1)+2*i
if sol_opps[new_team,current_pos] == None:
sol_opps[new_team,current_pos] = new_opponent1
sol_countries[new_team,getCountryById[new_opponent1]] += 1
sol_opps[new_opponent1 ,(2*p-1)] = new_team
sol_countries[new_opponent1,getCountryById[new_team]] += 1
if new_team in possible_opps[(2*p-1)-1][new_opponent1]:
possible_opps[(2*p-1)-1][new_opponent1].remove(new_team)
if sol_opps[new_team,current_pos+1] == None:
sol_opps[new_team,current_pos+1] = new_opponent2
sol_countries[new_team,getCountryById[new_opponent2]] += 1
sol_opps[new_opponent2,(2*p-1)-(1)] = new_team
sol_countries[new_opponent2,getCountryById[new_team]] += 1
if new_team in possible_opps[(2*p-1)][new_opponent2]:
possible_opps[(2*p-1)][new_opponent2].remove(new_team)
# print("COMPUTATIONS",n_computations)
# print("TIME\t",time.time()-start_time)
# print("CHECK\t",check_time)
# print("COMP\t",total_comp_time)
with open(filename+'.csv', "a") as f:
for t in teams:
f.write(f"{i_sim},{t['id']},{';'.join([str(sol_opps[t['id'],p]) for p in range(8)])}\n")
# # WRITE SOL '.html'
# sol = '<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8">'
# sol += " \
# <style> \
# table, th, td { \
# border: 1px solid black; \
# border-collapse: collapse; \
# text-align: center; \
# min-width:40px; \
# padding:3px; \
# margin: 3px; \
# font-family : Arial;\
# } \
# h1 {\
# font-family : Arial;\
# }\
# \
# #etable td:nth-child(10),#etable th:nth-child(10) { border-right: 5px solid black; }\
# #etable td:nth-child(19),#etable th:nth-child(19) { border-right: 5px solid black; }\
# #etable td:nth-child(28),#etable th:nth-child(28) { border-right: 5px solid black; }\
# tr:nth-child(9) { border-bottom: 5px solid black; }\
# tr:nth-child(18) { border-bottom: 5px solid black; }\
# tr:nth-child(27) { border-bottom: 5px solid black; }\
# </style> \
# "
# sol += "<table id='etable' style='border:5px solid black'>\n"
# sol += "<thead>\n"
# sol += "<tr>"
# sol += "<th></th>"
# sol += "<th colspan=9 style='border-right: 5px solid black;'>Pot A</th>"
# sol += "<th colspan=9 style='border-right: 5px solid black;'>Pot B</th>"
# sol += "<th colspan=9 style='border-right: 5px solid black;'>Pot C</th>"
# sol += "<th colspan=9>Pot D</th>"
# sol += "</tr>"
# sol += "<tr>\n"
# sol += f"<th></th>\n"
# for t in teams:
# sol += f"<th>{getTeamById[t['id']]}</th>\n"
# sol += "</tr>\n"
# sol += "</thead>\n"
# sol += "<tbody>\n"
# for t1 in teams:
# sol += "<tr>\n"
# sol += f"<td>{getTeamById[t1['id']]}</td>"
# for t2 in teams:
# if (t1['id'],t2['id']) in fixed_games:
# sol += f"<td>{t2['country']}</td>"
# elif (t2['id'],t1['id']) in fixed_games:
# sol += f"<td>@{t2['country']}</td>"
# else:
# sol += f"<td></td>"
# sol += "</tr>\n"
# sol += "</tbody>\n"
# sol += "</table>\n"
# with open(f'debug.html', 'w') as f:
# f.write(sol)
# n = sys.maxsize
# pool = Pool()
# result = {}
# answer = {}
# n_threads = cpu_count()
# # n_threads = 1
# for cpu in range(n_threads):
# result[cpu] = pool.apply_async(simulate_draws, args=(f'thread_{cpu}_pot_by_pot', n,))
# for cpu in range(n_threads):
# answer[cpu] = result[cpu].get()
# %%
n = 2
simulate_draws('test', n)
# %%